Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
2.
JAMA ; 329(5): 357-358, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36630109

RESUMO

This Medical News article discusses whether swabbing both the nose and the throat might improve the sensitivity of rapid antigen COVID-19 tests.


Assuntos
Teste para COVID-19 , COVID-19 , Nariz , Faringe , SARS-CoV-2 , Manejo de Espécimes , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Nariz/virologia , Faringe/virologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos
3.
Ear Nose Throat J ; 102(3): NP136-NP139, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33634718

RESUMO

Testing for coronavirus disease 2019 is critical in controlling the pandemic all over the world. Diagnosis of severe acute respiratory syndrome coronavirus-2 infection is based on real-time polymerase chain reaction performed on nasopharyngeal swab. If not adequately performed, the viral specimen collection can be painful and lead to complications. We present a complication occurred during a nasopharyngeal swab collection performed in a noncooperative patient where the plastic shaft of the swab fractured during the procedure, resulting in swab tip retention deep into the nasal cavity. The foreign body was found endoscopically, stuck between the nasal septum and the superior turbinate tail at the upper level of the left choana and removed under general anesthesia in a negative pressure operating room with the health care personnel wearing personal protective equipment. Unpleasant complications like the one described can happen when the swab is collected without the necessary knowledge of nasal anatomy or conducted inappropriately, especially in noncooperative patients. Moreover, the design of currently used viral swabs may expose to accidental rupture, with risk of foreign body retention in the nasal cavities. In such cases, diagnosis and treatment are endoscopy-guided procedures performed in an adequate setting to minimize the risk of spreading of the pandemic.


Assuntos
Teste para COVID-19 , COVID-19 , Corpos Estranhos , Nasofaringe , Humanos , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Corpos Estranhos/complicações , Corpos Estranhos/diagnóstico , Corpos Estranhos/cirurgia , Nasofaringe/cirurgia , SARS-CoV-2 , Endoscopia
4.
Biosensors (Basel) ; 12(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36140055

RESUMO

In the present work, highly multiplexed diagnostic KITs based on an Interferometric Optical Detection Method (IODM) were developed to evaluate six Coronavirus Disease 2019 (COVID-19)-related biomarkers. These biomarkers of COVID-19 were evaluated in 74 serum samples from severe, moderate, and mild patients with positive polymerase chain reaction (PCR), collected at the end of March 2020 in the Hospital Clínico San Carlos, in Madrid (Spain). The developed multiplexed diagnostic KITs were biofunctionalized to simultaneously measure different types of specific biomarkers involved in COVID-19. Thus, the serum samples were investigated by measuring the total specific Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglobulins A (sIgA), all of them against SARS-CoV-2, together with two biomarkers involved in inflammatory disorders, Ferritin (FER) and C Reactive Protein (CRP). To assess the results, a Multiple Linear Regression Model (MLRM) was carried out to study the influence of IgGs, IgMs, IgAs, FER, and CRP against the total sIgTs in these serum samples with a goodness of fit of 73.01% (Adjusted R-Squared).


Assuntos
Teste para COVID-19 , COVID-19 , Biomarcadores , Proteína C-Reativa , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Ferritinas , Humanos , Imunoglobulina A Secretora , Kit de Reagentes para Diagnóstico , SARS-CoV-2
6.
Infect Dis Now ; 52(3): 138-144, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149235

RESUMO

OBJECTIVES: Diagnosis of COVID-19 is essential to prevent the spread of SARS-CoV-2. Nasopharyngeal swabs (NPS) remain the gold standard in screening, although associated with false negative results (up to 30%). We developed a 3D simulator of the nasal and pharyngeal cavities for the learning and improvement of NPS collection. PATIENTS AND METHODS: Simulator training sessions were carried out in 11 centers in France. A questionnaire assessing the simulator was administered at the end of the sessions. The study population included both healthcare workers (HCW) and volunteers from the general population. RESULTS: Out of 589 participants, overall satisfaction was scored 9.0 [8.9-9.1] on a scale of 0 to 10 with excellent results in the 16 evaluation items of each category (HCWs and general population, NPS novices and experienced). The simulator was considered very realistic (95%), easy to use (97%), useful to understand the anatomy (89%) and NPS sampling technique (93%). This educational tool was considered essential (93%). Participants felt their future NPS would be more reliable (72%), less painful (70%), easier to perform (88%) and that they would be carried out more serenely (90%). The mean number of NPS conducted on the simulator to feel at ease was two; technical fluency with the simulator can thus be acquired quickly. CONCLUSION: Our simulator, whose 3D printing can be reproduced freely using a permanent open access link, is an essential educational tool to standardize the learning and improvement of NPS collection. It should enhance virus detection and thus contribute to better pandemic control.


Assuntos
Teste para COVID-19/métodos , COVID-19 , Impressão Tridimensional , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Humanos , Nasofaringe , SARS-CoV-2
7.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981149

RESUMO

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Cromatografia Líquida/métodos , Separação Imunomagnética/métodos , SARS-CoV-2/genética , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Anticorpos Antivirais/química , Biomarcadores/química , COVID-19/imunologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Teste para COVID-19/normas , Cromatografia Líquida/instrumentação , Cromatografia Líquida/normas , Humanos , Separação Imunomagnética/instrumentação , Separação Imunomagnética/normas , Nasofaringe/virologia , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/normas
8.
Adv Mater ; 34(3): e2104608, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738258

RESUMO

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here, an alternative biosensor transistor concept is developed, which relies on a solution-processed In2 O3 /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In2 O3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (am) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically engineered channel with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody receptors, real-time detection of the SARS-CoV-2 spike S1 protein down to am concentrations is demonstrated in under 2 min in physiological relevant conditions.


Assuntos
Técnicas Biossensoriais/instrumentação , COVID-19/virologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/análise , Transistores Eletrônicos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Imobilizados , Anticorpos Antivirais , Bioengenharia , COVID-19/sangue , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Simulação por Computador , Sistemas Computacionais , DNA/análise , Desenho de Equipamento , Humanos , Índio , Microtecnologia , Estudo de Prova de Conceito , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Óxido de Zinco
11.
Mol Biotechnol ; 64(4): 339-354, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34655396

RESUMO

The outbreak of COVID-19 pandemic and its consequences have inflicted a substantial damage on the world. In this study, it was attempted to review the recent coronaviruses appeared among the human being and their epidemic/pandemic spread throughout the world. Currently, there is an inevitable need for the establishment of a quick and easily available biosensor for tracing COVID-19 in all countries. It has been known that the incubation time of COVID-19 lasts about 14 days and 25% of the infected individuals are asymptomatic. To improve the ability to determine SARS-CoV-2 precisely and reduce the risk of eliciting false-negative results produced by mutating nature of coronaviruses, many researchers have established a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using mismatch-tolerant molecular beacons as multiplex real-time RT-PCR to distinguish between pathogenic and non-pathogenic strains of coronaviruses. The possible mechanisms and pathways for the detection of coronaviruses by biosensors have been reviewed in this study.


Assuntos
Teste para COVID-19/métodos , Técnicas Biossensoriais/métodos , Teste para COVID-19/instrumentação , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência/métodos , Humanos , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/métodos , Testes de Neutralização , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/patogenicidade , Ressonância de Plasmônio de Superfície
12.
Maputo; INS; 2022. 3 p. tab.
Não convencional em Português | RDSM | ID: biblio-1532173

RESUMO

Para o diagnóstico de varíola dos macacos (Monkeypox), amostras de esfregaço e fluído da lesão são as recomendadas para diagnóstico. Amostras de esfregaço nasofaríngeo, esfregaço orofaríngeo, biopsia, sangue total e soro são amostras complementares às de esfregaço/ fluído da lesão e podem ser colhidas para aumentar a capacidade de detecção. Nesta instrução de trabalho, o foco são amostras de esfregaço/fluído da lesão...


Assuntos
Humanos , Animais , Varíola dos Macacos/virologia , Vírus da Varíola/efeitos dos fármacos , Ferimentos e Lesões/diagnóstico , Bancos de Espécimes Biológicos/estatística & dados numéricos , Produtos Agrícolas/crescimento & desenvolvimento , Varíola dos Macacos/tratamento farmacológico , Teste para COVID-19/instrumentação , Laboratórios/ética , Moçambique
15.
Biosensors (Basel) ; 11(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34677325

RESUMO

The COVID-19 pandemic has changed people's lives and has brought society to a sudden standstill, with lockdowns and social distancing as the preferred preventative measures. To lift these measurements and reduce society's burden, developing an easy-to-use, rapid, and portable system to detect SARS-CoV-2 is mandatory. To this end, we developed a portable and semi-automated device for SARS-CoV-2 detection based on reverse transcription loop-mediated isothermal amplification followed by a CRISPR/Cas12a reaction. The device contains a heater element mounted on a printed circuit board, a cooler fan, a proportional integral derivative controller to control the temperature, and designated areas for 0.2 mL Eppendorf® PCR tubes. Our system has a limit of detection of 35 copies of the virus per microliter, which is significant and has the capability of being used in crisis centers, mobile laboratories, remote locations, or airports to diagnose individuals infected with SARS-CoV-2. We believe the current methodology that we have implemented in this article is beneficial for the early screening of infectious diseases, in which fast screening with high accuracy is necessary.


Assuntos
COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Humanos , Limite de Detecção , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/metabolismo , SARS-CoV-2/isolamento & purificação
16.
Mikrochim Acta ; 188(10): 335, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34505191

RESUMO

A practical colorimetric assay was developed for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For this purpose, magnetic γ Fe2O3 nanoparticles were synthesized and used as a peroxidase-like mimic activity molecule. In the presence of γ Fe2O3 nanoparticles, the color change of H2O2 included 3,3',5,5'-tetramethylbenzidine was monitored at the wavelength of 654 nm when spike protein interacted with angiotensin-converting enzyme 2 receptor. This oxidation-reduction reaction was examined both spectroscopically and by using electrochemical techniques. The experimental parameters were optimized and the analytical characteristics investigated. The developed assay was applied to real SARS-CoV-2 samples, and very good results that were in accordance with the real time polymerase chain reaction were obtained.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Colorimetria/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Benzidinas/química , Técnicas Biossensoriais/métodos , Teste para COVID-19/instrumentação , Catálise , Compostos Cromogênicos/química , Cisteína/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Nasofaringe/virologia , Orofaringe/virologia , Oxirredução , Peroxidase/química , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Acc Chem Res ; 54(19): 3643-3655, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34516092

RESUMO

Reliable, inexpensive, and rapid diagnostic tools are essential to control and prevent the spread of infectious diseases. Many commercial kits for coronavirus disease 2019 (COVID-19) diagnostics have played a crucial role in the fight against the COVID-19 pandemic. Most current standard in vitro diagnostic (IVD) protocols for infectious diseases are sensitive but time-consuming and require sophisticated laboratory equipment and specially trained personnel. Recent advances in biosensor technology suggest the potential to deliver point-of-care (POC) diagnostics that are affordable and provide accurate results in a short time. The ideal "sample-in-answer-out" type fully integrated POC infection diagnostic platforms are expected to be autonomous or easy-to-operate, equipment-free or infrastructure-independent, and high-throughput or easy to upscale. In this Account, we detail the recent progress made by our group and others in the development of centrifugal microfluidic devices or lab-on-a-disc (LOAD) systems. Unlike conventional pump-based fluid actuation, the centrifugal force generated by spinning the disc induces liquid pumping and no external fluidic interconnects are required. This allows a total fluidic network required for multiple steps of biological assays to be integrated on a disc, enabling fully automated POC diagnostics. Various applications have been demonstrated, including liquid biopsy for personalized cancer management, food applications, and environmental monitoring; here, we focus on IVD for infectious disease. First, we introduce various on-disc unit operation technologies, including reagent storage, sedimentation, filtration, valving, decanting, aliquoting, mixing, separation, serial dilution, washing, and calibration. Such centrifugal microfluidic technologies have already proved promising for micro-total-analysis systems for automated IVD ranging from molecular detection of pathogens to multiplexed enzyme-linked immunosorbent assays (ELISAs) that use raw samples such as whole blood or saliva. Some recent examples of LOAD systems for molecular diagnostics in which some or all steps of the assays are integrated on a disc, including pathogen enrichment, nucleic acid extraction, amplification, and detection, are discussed in detail. We then introduce fully automated ELISA systems with enhanced sensitivity. Furthermore, we demonstrate a toy-inspired fidget spinner that enables electricity-free and rapid analysis of pathogens from undiluted urine samples of patients with urinary tract infection symptoms and a phenotypic antimicrobial susceptibility test for an extreme POC diagnostics application. Considering the urgent need for cost-effective and reliable POC infection diagnostic tools, especially in the current pandemic crisis, the current limitations and future directions of fast and broad adaptation in real-world settings are also discussed. With proper attention to key challenges and leverage with recent advances in bio-sensing technologies, molecular biology, nanomaterials, analytical chemistry, miniaturization, system integration, and data management, LOAD systems hold the potential to deliver POC infection diagnostic tools with unprecedented performance regarding time, accuracy, and cost. We hope the new insight and promise of LOAD systems for POC infection diagnostics presented in this Account can spark new ideas and inspire further research and development to create better healthcare systems for current and future pandemics.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Biossensoriais/métodos , COVID-19/virologia , Teste para COVID-19/instrumentação , Centrifugação , Humanos , Dispositivos Lab-On-A-Chip , RNA Viral/análise , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
18.
PLoS One ; 16(9): e0255841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473717

RESUMO

BACKGROUND: Efforts to minimize COVID-19 exposure during the current SARS-CoV-2 pandemic have led to limitations in access to medical care and testing. The Tasso-SST kit includes all of the components necessary for remote, capillary blood self-collection. In this study, we sought to investigate the accuracy and reliability of the Tasso-SST device as a self-collection device for measurement of SARS-CoV-2 IgG antibodies. METHODS: Capillary blood was obtained via unsupervised and supervised application of the Tasso-SST device, and venous blood was collected by standard venipuncture. Unsupervised self-collected blood samples underwent either extreme summer or winter-simulated shipping conditions prior to testing. Sera obtained by all three methods were tested concurrently using the EuroImmun anti-SARS-CoV-2 S1 IgG assay in a CLIA-certified clinical laboratory. RESULTS: Successful Tasso-SST capillary blood collection by unsupervised and supervised administration was completed by 93.4% and 94.5% of participants, respectively. Sera from 56 participants, 55 with documented (PCR+) COVID-19, and 33 healthy controls were then tested for anti-SARS-CoV-2 IgG antibodies. Compared to venous blood results, Tasso-SST-collected (unstressed) and the summer- and winter-stressed blood samples demonstrated Deming regression slopes of 1.00 (95% CI: 0.99-1.02), 1.00 (95% CI: 0.98-1.01), and 0.99 (95% CI: 0.97-1.01), respectively, with an overall accuracy of 98.9%. CONCLUSIONS: Capillary blood self-collection using the Tasso-SST device had a high success rate. Moreover, excellent concordance was found for anti-SARS-CoV-2 IgG results between Tasso-SST capillary and standard venous blood-derived sera. The Tasso-SST device should enable widespread collection of capillary blood for testing without medical supervision, facilitating epidemiologic studies.


Assuntos
Anticorpos Antivirais/imunologia , Coleta de Amostras Sanguíneas/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Coleta de Amostras Sanguíneas/instrumentação , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Adulto Jovem
19.
PLoS One ; 16(9): e0256877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473769

RESUMO

In French Polynesia, the first case of SARS-CoV-2 infection was detected on March 10th, 2020, in a resident returning from France. Between March 28th and July 14th, international air traffic was interrupted and local transmission of SARS-CoV-2 was brought under control, with only 62 cases recorded. The main challenge for reopening the air border without requiring travelers to quarantine on arrival was to limit the risk of re-introducing SARS-CoV-2. Specific measures were implemented, including the obligation for all travelers to have a negative RT-PCR test for SARS-CoV-2 carried out within 3 days before departure, and to perform another RT-PCR testing 4 days after arrival. Because of limitation in available medical staff, travelers were provided a kit allowing self-collection of oral and nasal swabs. In addition to increase our testing capacity, self-collected samples from up to 10 travelers were pooled before RNA extraction and RT-PCR testing. When a pool tested positive, RNA extraction and RT-PCR were performed on each individual sample. We report here the results of COVID-19 surveillance (COV-CHECK PORINETIA) conducted between July 15th, 2020, and February 15th, 2021, in travelers using self-collection and pooling approaches. We tested 5,982 pools comprising 59,490 individual samples, and detected 273 (0.46%) travelers positive for SARS-CoV-2. A mean difference of 1.17 Ct (CI 95% 0.93-1.41) was found between positive individual samples and pools (N = 50), probably related to the volume of samples used for RNA extraction (200 µL versus 50 µL, respectively). Retrospective testing of positive samples self-collected from October 20th, 2020, using variants-specific amplification kit and spike gene sequencing, found at least 6 residents infected by the Alpha variant. Self-collection and pooling approaches allowed large-scale screening for SARS-CoV-2 using less human, material and financial resources. Moreover, this strategy allowed detecting the introduction of SARS-CoV-2 variants of concern in French Polynesia.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Programas de Rastreamento/métodos , Vigilância da População/métodos , Manejo de Espécimes/métodos , Viagem , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Epidemias/prevenção & controle , França/epidemiologia , Humanos , Polinésia/epidemiologia , Estudos Prospectivos , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Manejo de Espécimes/instrumentação
20.
Viruses ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578334

RESUMO

3D-printed alternatives to standard flocked swabs were rapidly developed to provide a response to the unprecedented and sudden need for an exponentially growing amount of diagnostic tools to fight the COVID-19 pandemic. In light of the anticipated shortage, a hospital-based 3D-printing platform was implemented in our institution for the production of swabs for nasopharyngeal and oropharyngeal sampling based on the freely available, open-source design provided to the community by University of South Florida's Health Radiology and Northwell Health System teams as a replacement for locally used commercial swabs. Validation of our 3D-printed swabs was performed with a head-to-head diagnostic accuracy study of the 3D-printed "Northwell model" with the cobas PCR Media® swab sample kit. We observed an excellent concordance (total agreement 96.8%, Kappa 0.936) in results obtained with the 3D-printed and flocked swabs, indicating that the in-house 3D-printed swab could be used reliably in the context of a shortage of flocked swabs. To our knowledge, this is the first study to report on autonomous hospital-based production and clinical validation of 3D-printed swabs.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2 , Teste para COVID-19/instrumentação , Gerenciamento Clínico , Humanos , Nasofaringe/virologia , Reação em Cadeia da Polimerase/métodos , Impressão Tridimensional , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...